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The “pairing” method reduces the variance in Monte-Carlo estimates of expectation values 
by comhimng the locations of the largest and smallest contributors to these cstimatcs. The 

number of paired locations and hence the variance reduction increase with the number of 
w’avc function evaluations 3,. This allows Monte-Carlo-like calculations to converge at rates 

faster than .Y, I.‘. In particular, an evaluation of the expectation values of the potential. < V). 
for Hi has a standard deviation which decreases as ,Vy, ‘172 and an cvaluatlon of ( V> for spin- 

aligned H, at the minimum in its potential well has a standard deviation which decreases as 
,,; ” 6: 

. ( IQXS 4Ladcmlc Prexs. 1°C 

An n-dimensional integral ready for Monte-Carlo integration can have the form 

where x is an n-dimensional vector. A Monte-Carlo estimate of I using N random 
x,‘s is 

I,,. = $ ,i .I‘(%) 
,=I 

where x, is the ith choice of the n components of x with each component being 
chosen uniformly and randomly between 0 and 1. The standard deviation of the 
mean value of [MC is o-~~, where 

a,,,= <(U> -.f)‘) 7 

,v (3) 

* Present addros: Lawrence Livermure Tiational Laboratory, P.O. Box 808. Livermore. California 
94550. 

483 



484 WILSON AND C0LDWEL.L 

For our purposes it is necessary to allow the argument off to be outside the 
region 0 to 1. Definingf(x + I) =f( ) rh x H ere I is an n-dimensional vector of integers 
makes f explicitly periodic so that 

(41 

where a is any n-dimensional vector. This allows the introduction of a set of A4 vec- 
tors a9 simiIar to the antithetic variates of Hammersly and Hanscomb [ 11, which 
can be held constant while xp is chosen randomly to yield 

r,cxp,=; f f(x,+a,). 4=1 
This allows us to define 

with standard deviation 

c: = (((f) -.f‘l)‘> 
iv . 

(6) 

(7) 

Jn Eq. (7) the fact that (J\) = (.f’) has been utilized and it should bc noted that 
(Si) is not equal to (S*). Only N independent random vectors enter Eqs. (6) and 
(7) but the number of function evaluations N, is N times M. Pairing is preferable to 
unbiased Monte-Carlo if Mai < CJ&~. In this work, a method for systematically 
finding new a,‘s for which nf, decreases faster than l/M will be described. 

A scheme for finding these a,? that essentially finds different pseudo-random 
number generators in each dimension and minimizes a2 for a class of “worst” 
functions has been developed by Haselgrove [2). The scheme is supposed to yield 
(T* = r/N2 and indeed for some functions this appears to be achieved. The method 
was extended by Burdick [3 3 to include the use of biased selection methods, quan- 
tum mechanical cxpcctation values, and standard deviation estimates similar to Eq. 
(7). The method has ci = a/N2 for small values of N, but with cr: > o&c. For N on 
the order of the optimization set 0: becomes smaller than a&,, but after about a 
factor of 2 gain changes slope and becomes proportional to l/N. 

The new ingredient in this work is abandonment of the notion of a universal set 
of aq’s. Jndecd cr: for other functions often rises while that for the function of 
interest drops. The method is simple, intuitive, and easy to use. It probably works 
because it utilizes in a small way the locations of the Monte-Carlo function 
evaluations, information which is usually discarded. 
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The largest and smallest values of,f(x,) contribute the largest amounts to Xc& 
in Eq. (3). If they could be paired so that they can only be found for a single x, 
value in Eq. (5), the resulting fA(x) which contains these two values contributes 
much less to C-T’, in Eq. (7) while contributing exactly the same amount to I,, in 
Eq. (6). 

The pairing method utilizes a number of ~1’ point estimators of I,,. The first level 
0 is made by selecting N vectors xi uniformly and randomly and averaging as in 
Eq. (2). The vector bt is made equal to the x, for which.f(x,) is largest and the vcc- 
tor bi to the x, for whichj’(x,) is smallest. Then at level 1 

a, =bl (8) 

a2 = bi. (9) 

The second N point estimator consists of an independent set of xP’s used to average 
the.f,,(x,) in Eq. (5) as in Eq. (6) with the a,‘s given in Eqs. (8) and (9). Note tha? 
an x, of zero in this set would yield 

which as a pair contributes less to the sum in Eq. (7) than these same terms occur- 
ring independently contribute to the sum in Eq. (3). 

The xP’s for which j’*(x,,) is extreme are saved as bf and b:. This enables us to 
generate the set of a’s for level 2 as 

a,=bt+bT 

a, = bf + b; 

a, = b: + b: 

a4 = bi + b: 

(11) 

to be used in the next N point estimator of i. Finally. the Lth set of a’s to bc used in 
the L + 1 level estimator arc 

a, = i b;, 
, I 

where ,CI~ is the jth set of the 2’ possible sets of { 1. 2, l..... 2 ;. Note that only 2L 
terms need be stored to generate the M=2L vectors a(,. 
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The result of these efforts is that fA(xi) may be written 

fA(Xj) =& ,g f(xi + aj) 
J=l 

=;f i ... if(xi+b;+b;+ ... +b,L). 
J=l k=l I= 1 

(13) 

Note that each additional level utilizes a new set of N random xP’s and doubles the 
total number of function evaluations. 

Before introducing the expectation values used in testing the pairing method, it 
can be illustrated with a simple 2d lattice function. Let space consist only of the 16 
lattice points shown in Fig. 1 along with some of its periodic repeats. The function 
f(x, JJ) is 4 at points (0.25, 0.25) (0.25, 0.50) (0.50, 0.25) (0.50, 0.50) and zero for 
the other 12. The average value (f) = 1 and (f ‘) = 4 which implies Nr& = 3. A 
pairing method estimation of (f) at the end of level 0 would thus have the usual 
Monte-Carlo standard deviation rr2 = 3/N. In addition the code would have found 
bi = (0.25,0.25) or its equivalent and bi would be (0.0, 0.50) or one of the 12 other 
X, y value sets for whichf(x, y) = 0. This one will be followed through a number of 
levels. 

The vectors a4 at level 1 are (0.25, 0.25) and (0, 0.50), there is one x for which 
fA = 4, which makes bl = (0.250), six x’s for which fA = 2, and nine for which fA = 0, 
so that bz can be picked as (0, 0.75). For this choice at level 1, NCJ~ = 3, exactly the 
same as for this many random function evaluations. The vector ay at level 2 is 
(0.50, 0.25), (0.25, 0.50) (0.25, 0), (0, 0.25). There are four x’s withy, = 2, eight with 
fA = 1, and four with fA = 0. The b’s may be chosen to be 6: = (0,0.25) and 
b: = (0.5, 0.75). At level 2, Nai = i, which is less than the value of i for this many 
random evaluations. The vectors ay at level 3 are (0.50, 0.50), (0.25, 0.75), (0.50, 0), 
(0.25, 0.25), (0, 0.50), (0.75, 0.75), (0, 0), and (0.75,0.25) which is the checkerboard 
pattern covering every other square shown in Fig. 1. For all x, fA = 1 and thus at 
level 3 Noi = 0. 

FIG. 1. A simple function f(x, y) defined on the lattice points. In the shaded regions f(x, y) = 4, 
elsewhere f(x, y) = 0. The A’s are the a4 vectors at level 3 in the example. 



The example is so simple that the correct four trapezoidal rule points also give an 
exact answer. Furthermore only one of the multitude of ways of reaching level 3 has 
been followed in detail. A bit of promise, however, is present in the example. 

EXPK~ATION VALLTES 

A Monte-Carlo estimate of the expectation value ofj‘with respect to a trial wave 
function I,!I, may be written as 

J‘d F(x) dx I;‘N cy=, F.JX() 
(f) =g) G(x)dx = l/NC;z, G,(x,) 

ji4) 

where 

F=jii;. G‘=*: 115) 

and I;,, and G,, are defined by Eq. (5). The same xi vectors are used in both the 
numerator and denominator which makes the estimate more accurate than perfor- 
ming two independent estimates of the integrals and dividing by the result LS], 
though the convergence rate is still the N-“’ typical of Monte-Carlo methods, 

The standard deviation (T in the estimate of an expectation value using (14) may 
be written as 

which is equivalent to Eq. (20) derived in Appendix A. 
The biased selection method described in Appendix B changes a simple Montc- 

Carlo estimate to 

(17) 

where qi is chosen randomly and x is functionally related to q instead of being 
chosen randomly as in Eq. (2). The expectation values in Eq. (14) remain the same 
except Eq. (15) becomes 

F=f(x(q)) $,(x(q))/*(q), G = 4?(W)/*(q) (18) 

where r?(q) is given explicitly for H; in Eq. (28). 
The fact that for expectation values the standard deviation is proportional to 

((FA - (f ) GA)‘) introduces a slight complication in the method, an estimate of 
(f) enters into the function being extremized. A crude estimate of (J) needs to be 
found before the first level, then subsequently the estimate of (f) from the last 
completed level can be used. 
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RESULTS 

Expectation values of the energy (H$&,), the kinetic energy 
(T) = ( IV+/$j’), and the potential energy ( V) were estimated for H: and spin- 
aligned H2 with nuclei 7.8 aB apart using the trial wave functions described in 
Appendix C and the biased selection method of Appendix B combined with pairing 
of the randomly chosen q vectors. The q vectors for Hz are four dimensional, three 
electron coordinates plus one extra from the biased selection method. The q vectors 
for H, are eight dimensional? six electron coordinates plus two extra from the 
biased selection method. Though in principle the H: integrals can be reduced to 
two dimensional and the H, integrals to five dimensional, owing to the fact that 
Monte-Carlo methods are very insensitive to such reductions no attempts were 
made in this direction. 

Table I and Fig. 2 give the results for H 2 from two independent runs each 
involving slightly more than 4 x lo6 wave function evaluations. The expectation 
value of ( V) for both runs was calculated using Eqs. (13) and (14) and the stan- 
dard deviation was calculated using Eq. (16). The M in Eq. (13) was 1 for levels - 1 
and 0 and 2’ for higher levels. The first run used N= 1024 in Eq. (13) and the final 
M was 211, and the second run used N= 64 in Eq. (13) and the final M was 215. 
Note that N, is N times the sum of all MI up to and including the last level. At each 
level the standard deviation was calculated using Eq. (16) with N= 1024 for the 
first pass and N = 64 for the second pass. Since for large M the functions FA and 
GA are themselves almost integral estimates, this is roughly equivalent to evaluating 
these integrals 1024 times for N = 1024 and 64 times for N = 64 and determining the 
standard deviations from the resulting variations. For small A4, using N = 64 may 
result in too few function evaluations to adequately sample the exceptionally large 
and small regions resulting in standard deviation estimates with rather large stan- 
dard deviations. As A4 increases, however, FA and GA rapidly become very smooth 
owing to the fact that such regions are by design becoming very unlikely to be mis- 
sed. The final estimates incorporated the results of all levels by utilizing Eq. (22) for 
the expectation values and Eq. (23) for their standard deviations. 

Since the expensive part of the calculation is finding x(q).and evaluating e(x), in 

TABLE I 

Results for H; (4.19 x lo6 Wave Function Evaluations) 

cf.9 C(T) = <lW/$l”>) <fW/!b > (<m/$)-(v)-(n) 
N CRY) WY) CRY) WY) 

1024 - 1.975404 0.969459 - 1.00600545 -6.045 x 10-5 
3~ 0.000068 + 0.000043 f 0.00ooo008 *8.045x IO-5 

64 - 1.975488 0.969446 - 1.00600543 +3.66x 1O-5 
+ 0.000048 + 0.000022 f o.oooooco4 + 5.28 x 1O-5 



PAIRIN<; METHOD 489 

FIG. 2. Standard deviation in (V) for H; versus the number of wave function evaluations (pairing 
with respect to V). ( - ) oMC without pairing. ( --) Line for which b,,‘x ‘V’, ‘lT2. (+) Results using 
A’= 1024 in Eq. (16). (c‘i) Results using N= 64 in Eq. (16). 

addition to ( L’), expectation values of (T) = (IV$/$l’) and of (HlI/iJ/) were 
estimated in the same runs. However, in the term F, - (.f) G,, whose extremal 
values determine the q’s which are to be paired, f was kept equal to Y. The final 
results of the two runs arc given in Table I along with the very satisfying fact that 
to within the error (H$j$) = (T) + ( k’). This last is an important test of the 
integration since an integration by parts has removed the singularity in T which 
otherwise nearly cancels the singularity in V to give an /I$/$ with almost no 
singularity. Thus (r), ( k’), and (fft+b/t+b) emphasize somewhat different regions of 
space and different properties of rc/ and will normally not be equal if there are errors 
either in calculating the derivatives of $ or in evaluating the integrals. Indeed the 
ability to make this test is one reason for wanting an accurate ( L’). 

Figure 2 shows the standard deviation in ( V) for Hi as a function of the num- 
ber of wave function evaluations. The second to the last point plotted required 
700 CPU seconds on an IBM 3081, and the last point 1400 CPU seconds. The stan- 
dard deviation is decreasing as N; ‘L’* If the desired quantity were ( V) with a 
standard deviation less than 10 4 Ry, simple Monte-Carlo would require nearly 
100 times as many CPU seconds to reach the desired accuracy. 

A more detailed examination of the two runs is shown in Fig. 3, where the ratio 
of the standard deviation per wave function evaluation at the last level calculated to 
that of the unpaired Monte-Carlo result is plotted both for (Y) and also for 
(I!$ j$ ) calculated at the same time using a vectors selected to minimize the stan- 
dard deviation in ( k’). Note that the abscissa in this plot is the level number I. not 
the number of function evaluations. Even though the standard deviation in the 
N = 64 run at, for example, level 7 is much higher than that for the N = 1024 run, 
the number of function evaluations to find the N = 64 result is so much smaller 
that, as seen in Fig. 2, the N = 64 result has the smaller total standard deviation. 
The standard deviation for (H$@) and also for (T) (not shown because its ratio 
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0.61 $ ” ‘<<.+ 

level 

FIG. 3. Ratios cdgMC for ( V) and (H$/$ > in H: versus level when pairing is with respect to V. 

(---I oA/uMC for (WIti>. (-) UA/OW for (V). (+) Values for N= 1024 in Eq. (16). (0) Values 
for N=64 in Eq. (16). 

to gMC is very nearly the same as that for (H$/$)) at low levels is constant at the 
unpaired value, then at about level 5 begins to decrease at nearly the same rate as 
that in (V), indicating that the set of a’s being constructed in this case lowers the 
standard deviations for all three quantities. 

If one only wanted to know (H$/ld/), one would use H$/$ as the f in 
FA - (f) GA not V. The results of an N = 400 run doing this are shown in Fig. 4. 
The standard deviation in (H$/$ ), especially for levels less than 5, is less than 
when the pairing was carried out with respect to V. The standard deviation in ( I’) 
using these a’s, however, is larger and moreover appears to be decreasing for large 
levels as N;O.” rather than N; . O’* The reason for this is probably the constancy of 
Ht+b/t+b for x(q)% which cause the potential to vary over wide ranges. 

FIG. 4. Ratios mA/oMC for (V) and (HI//$) in H: versus level when pairing is with respect to 
WIti. (---I UA/~MC for (fWl$). (-1 uA uMc for (V). (0) Values for (H$/$), N=400 in I 
Eq. (16). ( + ) Values for < V), N = 400 (same run). 
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FK. 5. Standard deviation in (V) for spin-aligned H, versus the number of wave function 
evaluations (pairing with respect to V). (- -) (iyCz without pairing. ( - ) Line for which a,,~.V= ‘I’>. 
( x ) Results using :V = 1024 in Eq. (16). (C: ) Results using :V- 64 in Eq. (16). 

The Hi calculations were made as four-dimensional calculations, but there is an 
underlying two-dimensional structure. The pairing method in part is simply 
uncovering this structure and utilizing it to achieve a relatively slow, by two-dimen- 
sional standards, convergence rate which is still faster than unpaired Monte-Carlo. 
The spin-aligned H, system which is treated here as an eight-dimensional integral 
cannot be reduced below five dimensions and is therefore a much more stringent 
test of the method. 

The standard deviation in ( V) for spin-aligned H, as a function of the number 
of wave function evaluations is shown in Fig. 5. Approximately 2; hours of IBM 
3081 CPU time were required to reach the last x in this figure. The standard 
deviation cA is decreasing as N; “.62 and is approximately half the size of (Tag at the 
highest numbers of function evaluations considered. The results of these 
calculations are shown in Table II. If the goal were to find ( V) with (TV less than 
10 4 Ry approximately 9 x 10’ function evaluations would be required assuming 

TABLE II 

Results for Hz 

((7‘).- ((IWi> - 
(V> (IV~:~l’>) (HV/llr) (V>- (I‘), 

:v bie CRY) (RY) (R!) iRy) 
--. 

1024 4.2 x IO’ - 4.oOCK)Z 2.wOOx73 - 2.oooo361 +1.0x10 d 
1: 0.00070 ? 0.0000078 ~O.OOOOO12 57.0x IO-” 

1024 2.1 x 106 -3.YY874 2.OOOlOY - 2.oooo366 A 14.1 x 10 G 
2 0.00095 + o.oooo 12 ~0.OOooO17 ~YSXIO i 

64 2.1 x IO” -4.00139 2.0009945 -2.000037x - 12.6x IO ’ 
io.00113 * o.ooooo9 I +0.0000014 r I I.3 x IO -’ 
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if;ii 

* 0 2 4 6 ,,v8,, 10 12 14 

FIG. 6. Ratio oA/cMc for ( V) for spin-aligned H, when pairing is with respect to V. (+, x ) Two 
independent runs with N= 1024 in Eq. (16). (0) N= 64 in Eq. (16). 

the continuance of this convergence rate. This is less than the number required to 
reduce oMC to this size by a factor of 8.5. 

In Fig. 6, the ratio of cA as given by Eq. (16) to crMc the unpaired result is shown 
for two N = 1024 runs along with one N= 64 run. The N= 64 run is not only 
higher than the N= 1024 runs, it is so much higher that the factor of 32 or 5 level 
advantage in the number of function evaluations is almost exactly canceled, leaving 
the N = 1024 and N 7 64 gA’s almost equal as already seen in Fig. 5. An inter- 
pretation of this is that the N evaluations must contain rather rare events to 
properly pair them. Note, however, that the ratio with N= 64 drops for the first 
four levels then fluctuates but remains approximately constant for the next five 
levels. This implies the existence of gross features which pairing can account for 
relatively early coupled with finer details which require many more function 
evaluations. 

If,one ,is solely interested in the expectation value of (Ht+b/1//), H$/t+b should be 
used as the f in the FA - (f) G, which determines the locations paired rather than 
l? An N = 1024 run of spin-aligned H, carried out to level 9 in which this was done 
is shown in Fig. 7. The ratio gA/oMC decreases steadily from 1.0 at level 0 to 0.9 at 
level 9, indicating a slightly improved convergence rate of NL’.~~. In the same run 
the ratio of DA/cMC for (I’) using a vectors selected to improve cA/gMC for 
(Ht+b/$) increases rather dramatically to a maximum of 2.76 at level 8. At level 8, 
2.6 x lo6 wave function evaluations yield the same accuracy in (He/+) as 3.2 x lo6 

3,o I I I I 
0 

0 2 0 6 8 

IWZI 

FIG. 7. Ratios 6JuMC for (V) and (H$/$) for spin-aligned H2 when pairing is with respect to 
(H$/((I), N= 1024 in Eq. (16). (0) a,,/aMC for <V>. ( x ) ~AI~Mc for CH$l$>. 
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unpaired wave function evaluations and also the same accuracy in ( V) as 3.4 x 105 
unpaired wave function evaluations. This comes about because (H$:‘$ - E) 1)’ has 
both its largest positive and negative values in the same regions where 
(P’- (V)) rl/’ is all of one sign. Thus the values that cancel to shrink (T,, for HI/I/$ 
add to enlarge c,, for V. 

The pairing method constructs vectors a, containing the coordinate values giving 
rise to the most extreme values of the F defined in Eq. (18 ). Thcsc vectors contain 
information about the coordinate values giving rise to Fwhich is usually ignored in 
Monte-Carlo schemes for estimating integrals. Only a slight modification of Monte- 
Carlo, i.e., the replacement of F(x-,) by F,,(xi) as defined in Eq. (13), is required. The 
overhead is so small as to be almost undetectable while the accuracy gains can be 
large. In summary, pairing should be considered when truly accurate expectation 
values are needed and the number of function evaluations is large compared with 
the expected oscillations in the function being evaluated. Accuracy increases of a 
factor of 10 or computer time savings of a factor of 100 have been shown in the 
present work. 

APPENDIX A: ERROR ESTIMATION 

The statistical error which results from estimating the expectation value, E, using 
N random values can be determined, as explained in [43: by summing the squares 
of the differences between the N evaluations of E over N - 1 values which result 
from omitting each xi in turn. The difference in the estimate due to the omission of 
the ith term is 

which noting that E= (F)/(G) and combining terms becomes 

6 =’ CFACxi) - EGA(-yOl 
’ II’ L(G) - (1iG) G,,(x,)l 

where E, F, G, F.&(x,), and G..,(x,) arc defined in the second section. Since 
G,,(x,)+N(G}, we approximate 1 - G,(x,)/N(G’, by 1 and simplify to obtain 

6i= N(G) L [IFA - EG,(xr)l (19) 
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so that the variance is given by 

N 
l g2= 1 a;=y 

IV(G) 
[(F*) -2E(FG) + E2(G2)]. 

1-I 

Note that, as in Eq. (5) M wave function evaluations are required for each of the 
N values of FA(xj) and G,(x;) for a total of ,V, = N*M wave function evaluations to 
determine E. The variations of the :V values of F,, and G,, which are statistically 
independent are then used by Eq. (20) to determine c. 

The average over estimates with varying accuracies is done in the standard 
fashion [S] which minimizes x2 with respect to the estimate of E: 

Solving the above expression for E yields 

(21) 

(22) 

so the weight factor for each estimate is equal to l/~f. The o2 at each stage is given 
by 

(23) 

A word of caution is required here in case an estimate results with an artificially 
low variance. The incorrect low estimate could dominate both Eqs. (22) and (23) 
normally giving rise to both an incorrect E and cr. This cast is detectable owing to 
the incorrect E which causes x2 to exceed its normal value. The cast where the E, 
associated with the incorrect ci is not itself in error is much harder to detect. For IV 
sufficiently large, one need not worry about this situation because the error in the 
variance converges as l/N, but one does need to be aware of this possibility in the 
early levels. We checked our results over the initial stages by performing indepen- 
dent evaluations and comparing the results for consistency at each of the levels. 

APPENDIX B: THE BI.~sE~ SELECTION METHOD 

The biased selection method, as used here. is a specialized form of information 
sampling involving two centers. Multidimensional points, qi, are selected with 
relative probabilities w, to ensure that all regions of importance are sampled. This 
method is adapted from the work done by R. L. Coldwell and R. E. Lowther [6]. 

The H: ion is positioned in a box of maximum side length of 12.8 Bohr radii. 
The axis which contains the two nuclei is along the longest diagonal possible 
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between two corners of the box. The arrangement does not make use of the radial 
symmetry of the Hi ion. We chose to do this to test whether the code could utilize 
this information without it being explicitly written in the code. We felt that this 
situation is more in line with what we would expect the code to do for more com- 
plex systems, where underlying symmetries are not known. 

The electronic coordinates are selected with respect to one of the nuclei. Since the 
two nuclei are identical, the nucleus used to specify the placement of the electron is 
a function of a random value, q1 ) where nucleus A is used for q, d 0.5, and nucleus 
B for q, 20.5. 

The electron distance from the nucleus, r, is selected such that 

(24) 

i.e., with a density proportional to h(r). The function h(r) is obtained by doing a 
linear interpolation between 64 points spaced 0.2 a, apart of the function 

(25) 

with r= (4, 2, OS}. The first point h(O) is set equal to h(0.2) so that the resulting 
weight function near the nuclei contains an r2 that more than cancels the ljr in the 
potential. Values for 4 and p = cos 0 arc specified by C$ = 27~(1, and p = 2q, - i 1 so 
that the Cartesian coordinates of the electron are 

-x(q,: q2, 93, q4) = r(q2) sinCd(q,)l jl - Cc((q4)1’+ NY,) 

Aq13 q2, 4,, q4) = r(q2) cosEd(e)l Jl - Mq4)1’+ Y(q,) 
4q, z 42, q3, q4) = r(e) A441 + Z(4,). 

X(q,)= Y(q,)=Z(q,)= *r,,$,fi 

(26) 

where the plus sign is used with one nucleus and the minus sign is used with the 
other and rAB is the distance between the two nuclei expressed in Bohr radii. 

The relative probability of choosing this position in Cartesian coordinates from 
all possible positions is 

w(q)+& (27) 

Since the position of the electron may be chosen with respect to either of the Two 
nuclei, the average probability for selecting positions is 

1 4rwA) h(rB) 
ti(q)=2 -+4nr’ [ A 1s 1 (28) 



496 WILSON AND COLDWELI. 

where the subscripts A and B indicate which of the two nuclei is being used for the 
placement of the electron. 

Using the biased selection method in this manner allows an integral to be written 

The MC estimate of this integral is then (f/w) and its variance is that of (f/a). 
Note that J’[x(y)]/~[x(y)] will tend to be constant: so that when a Monte-Carlo 
estimate of Eq. (29) is obtained, the variance between individual evaluations of the 
integrand will bc small which will reduce the inherent Monte-Carlo error. 

The biased selection procedure for spin-aligned H, uses an h(r) in which only 
LY = 2 and allows for a 7% probability of placing each electron completely at ran- 
dom within the large box, a 3% probability of placing both electrons with respect 
to the same nucleus, and a 12% probability of placing the second electron at a ran- 
dom distance between 0 and 1.3 u” from the first. This last probability removes the 
singularity in the electron electron part of the potential. The resulting w(q) is of 
course averaged over every possible way of reaching the final configuration exactly 
as in Eq. (28) above. 

APPENDIX C: TIIE: TRJ.41. WAVE FUWZTIONS 

The pairing method was tested on two systems consisting of two protons, A and 
B, 7.8 Bohr radii apart. The first system, Ht , has only one electron, while the 
second, spin-aligned H,, has two spin-up electrons. This nuclear separation dis- 
tance is approximately the potential minimum of the ‘L&T state of H,, spin-aligned 
hydrogen. The one-electron wave function is 

Ic/ = X(r,* + JIB) Gel.4 - T,H) (30) 

with 

x(x) = E -(‘jZb ,to &Xi (31) 

and 

q%(x)= (dlj*)x+ e -(l/*)x) f u(i+5)X*i+ (c,(Ij*)x-e -(li*b) x i ai+,x2t+ I t321 

,=" i= 0 

where the parameters given in Table III were found by minimizing 

(33) 
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TABLE III 

The Coellicients for ,Y(x) and d(x) in Eq. (31) and Eq. (32) 

i 0 1 2 3 4 

n, 1.0 -9.54565 x IO ’ -1.75124x10 3 1.06063 x 10 -’ -3.38318 x IO o 
i 5 6 1 8 9 

A, 1.0 1.07657 x IO i 

with respect to these parameters for N = 1000. The o, refers to the bias used in 
selecting the N configurations as described in Appendix B. The 4% found is 

2.8 x 10 -4 Ry with (E) = -1.00600545 + 8 x 10 ’ Ry differing from that found by 
an exact solution, which is possible for Hi ) by less than the linal standard 
deviation. (The code which found the exact result of - 1.0060549 Ry is due to 
Hyun-Joon Shin [7] using the methods of Barber and Hasse [8,9],) 

The spin-aligned H, wave function is 

$ = AA.n;I.2{e-‘14-‘28Ct+ c,(rlBl r12)(a, + a,(r,, - rAB) 

+ u3rlA + u4r2H + uSrlAY2L3 +%& + %tr,2 -- rA,3)2)l ) (34) 

where A A,H.z l.2 is an operator which antisymmetrizes with respect to nuclei A and B 
and electrons 1 and 2. The term oP is given by 

t‘p(r,R, r,2) =s(r12),:r12 - 2.s(rlA)!rIH + Jir,,, (35) 

with 

.s(x) = I - 4( 1 .- X):/3 + 8(0.5 - x):/3 (36) 

where 

(xl+ =o: x<o 

= x, x > 0. 
(37) 

This form is suggested by the fact that the Hamiltonian for two separated atoms 
can be written as 

H= -V:-2/r,,+(llr,,-2/r,,+ I/r,,,) 

-V:-2/r28+(l/r,Z-2!rZA+ l/r,,) 
(38) 

where the terms in parentheses are small for electron 1 close to nucleus A and elec- 
tron 2 close to nucleus B. The splints in up remove the singularities while leaving z;,, 
identical to the term in parentheses for r,2 and rID on the order of 7.8 aB. 

The parameters a, through a, were found in two stages. First n2 was minimized 
with respect to the a’s using N=400. The resulting II, had 



498 WILSON AND COLDWELL 

TABLE IV 

The Coefficients in $(rl, r2) (Eq. (34)) 

i 1 2 3 4 
ai - 3.024050 -3.872121 x lo-’ -4.98549 x lo-* -3.965802 x 1O-2 
i 5 6 7 
ai -1.501606 x 1O-2 5.380148 x 10-3 3.331075 x 10-X 

(E) = -2 + (-3.36 + 0.17) x lop5 Ry and cz 1.4 x low3 Ry. This $ was used to 
find a set of 256 configurations using the pairing method, plus another 144 “worst” 
set of configuration picked from 28,000 evaluations of H$/$. These configurations 
provide a capsulized picture of those areas where $ is not as good as it could be 
and allow more minimization of E over a small set of points than would otherwise 
be possible. Then (E) + 25’0 was minimized with respect to these 400 con- 
figurations. The resulting parameters are given in Table IV. For this *, 

J- NC = 2.54 x 10e3 Ry and when finally evaluated in the process of this work 
(E) = -2 + (-3.65 f 0.10) x 10e5 Ry, which should be compared with the value 
of -4.09 x 10P5 Ry calculated by Kolos and Wolniewicz [lo] using a 60- 
parameter wave function. 
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